Fractal and Multi-Scale Fractal Dimension analysis: a comparative study of Bouligand-Minkowski method

نویسندگان

  • André Ricardo Backes
  • Odemir Martinez Bruno
چکیده

Shape is one of the most important visual attributes used to characterize objects, playing a important role in pattern recognition. There are various approaches to extract relevant information of a shape. An approach widely used in shape analysis is the complexity, and Fractal Dimension and Multi-Scale Fractal Dimension are both well-known methodologies to estimate it. This papers presents a comparative study between Fractal Dimension and Multi-Scale Fractal Dimension in a shape analysis context. Through experimental comparison using a shape database previously classified, both methods are compared. Different parameters configuration of each method are considered and a discussion about the results of each method is also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture analysis by multi-resolution fractal descriptors

This work proposes a texture descriptor based on fractal theory. The method is based on the Bouligand-Minkowski descriptors. We decompose the original image recursively into 4 equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The propose...

متن کامل

Improving Speaker Identification Rate Using Fractals [IJCNN1005]

: This paper reports on a text-dependent speaker identification system that combines Mel-frequency cepstral coefficients with non-linear turbulence information extracted using Multi-Scale Fractal Dimension (MFD). The MFD is estimated using Box-Counting and Minkowiski-Bouligand dimension. The proposed framework is implemented in conjunction with sub-band based speaker identification system. Resu...

متن کامل

Enhancing Volumetric Bouligand-Minkowski Fractal Descriptors by using Functional Data Analysis

This work proposes and study the concept of Functional Data Analysis transform, applying it to the performance improving of volumetric Bouligand-Minkowski fractal descriptors. The proposed transform consists essentially in changing the descriptors originally defined in the space of the calculus of fractal dimension into the space of coefficients used in the functional data representation of the...

متن کامل

Research on Fractal Method for Soft Fault Diagnosis of Nonlinear Analog Circuits

The soft fault diagnosis of nonlinear analog circuits is an important guarantee of the stable and reliable operation of electronic products. In view of the low accuracy and heavy computation load of current soft fault diagnosis methods for nonlinear analog circuits, this paper presents a soft fault diagnosis method for nonlinear analog circuits based on fractal theory. Analyzing the single-frac...

متن کامل

Fractality and Lapidus zeta functions at infinity

We study fractality of unbounded sets of finite Lebesgue measure at infinity by introducing the notions of Minkowski dimension and content at infinity. We also introduce the Lapidus zeta function at infinity, study its properties and demonstrate its use in analysis of fractal properties of unbounded sets at infinity. AMS subject classifications: 11M41, 28A12, 28A75, 28A80, 28B15, 42B20, 44A05, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1201.3153  شماره 

صفحات  -

تاریخ انتشار 2008